Algebraic Number Theory

2.2.23 Discriminants of trinomials

Lemma 2.2.24

Let \(\alpha \) be an algebraic number with minimal polynomial \(m_\alpha \) and let \(\beta \in \mathbb {Q}(\alpha )\) be such that \(\alpha =\frac{a}{b\beta +c}\) with \(a,b,c \in \mathbb {Q}\) and \(b \neq 0\). Then \(\deg (m_\alpha )=\deg (m_\beta )\).

Proof

Note that \(\mathbb {Q}(\alpha )=\mathbb {Q}(\beta )\) (just do double inclusion). Then since \(\deg (m_\beta )=[\mathbb {Q}(\beta ):\mathbb {Q}]=[\mathbb {Q}(\alpha ):\mathbb {Q}]=\deg (m_\alpha )\) (by Cor. 1.3.12) we get the result.

Theorem 2.2.25

Let \(K=\mathbb {Q}(\alpha )\) a number field with \(m_\alpha (x)=x^n+ax+b\). Then

\[ \Delta (\{ 1,\alpha ,\dots ,\alpha ^{n-1}\} )=(-1)^{\frac{n(n-1)}{2}}(n^nb^{n-1}+(-1)^{n-1}(n-1)^{n-1}a^n) . \]

Proof

From Proposition 2.2.19 we have

\[ \Delta (\{ 1,\alpha ,\dots ,\alpha ^{n-1}\} =(-1)^{\frac{n(n-1)}{2}}N_{K/\mathbb {Q}}(m_\alpha '(\alpha ))). \]

Now, let \(\beta =m_\alpha '(\alpha )\), then we have

\[ \beta =n \alpha ^{n-1}+a=-(n-1)a-nb\alpha ^{-1}. \]

Since \(\alpha ^n+a\alpha +b=0\) implies \(n\alpha ^{n-1}=-na-nb\alpha ^{-1}\). Which gives

\[ \alpha =\frac{-nb}{\beta +(n-1)a}. \]

Now, using Lemma 2.2.24 we see that \(n=\deg (m_\alpha )=\deg (m_\beta )\). Moreover, if we take \(m_\alpha (x)=x^n+ax+b\), evaluate at \(\frac{-nb}{\beta +(n-1)a}\) and clear denominators, we get that

\[ (\beta +(n-1)a)^n-na(\beta +(n-1)a)^{n-1}+(-n)^nb^{n-1}=0. \]

Therefore \(\beta \) is a root of

\[ (x+(n-1)a)^n-na(x+(n-1)a)^{n-1}+(-n)^nb^{n-1} \]

which is a monic polynomial of degree \(n=\deg (m_\beta )\), therefore this is the minimal polynomial of \(\beta \).

Now, by Proposition 1.6.6 or Corollary 1.6.8 we have \(C_\beta =m_\beta \). Therefore by Proposition 1.7.3 we see that \((-1)^n\) times the constant coefficient of \(m_\beta \) is \(N_{K/\mathbb {Q}}(\beta )\). Therefore we get

\[ N_{K/\mathbb {Q}}(\beta )=n^nb^{n-1}+(-1)^{n-1}(n-1)^{n-1}a^n. \]

which gives the result.

Corollary 2.2.26
#

Let \(K=\mathbb {Q}(\alpha )\) be a number field with \(m_\alpha (x)=x^3+ax+b\). Then

\[ \Delta (\{ 1,\alpha ,\alpha ^2\} )=-27b^2-4a^3. \]

Let \(K=\mathbb {Q}(\alpha )\) a number field with \([K:\mathbb {Q}]=3\). Then \(m_\alpha (x)=x^3+ax^2+bx+c\) for \(a,b,c \in \mathbb {Q}\). If we replace \(\alpha \) with \(\alpha ':=\alpha +a/3\) then \(\mathbb {Q}(\alpha )=\mathbb {Q}(\alpha ')\) but this has the effect of removing the \(x^2\) term in the minimal polynomial, so after relabelling if necessary, we have \(K=\mathbb {Q}(\alpha )\) with \(m_{\alpha }(x)=x^3+ax+b\). Therefore Corollary 2.2.26 gives us a quick way to find the discriminant of a cubic field.

Example 2.2.27
#

Let \(\alpha \) be a root of \(x^3+x+1\), and let \(K=\mathbb {Q}(\alpha )\). Then \(\Delta (\{ 1,\alpha ,\alpha ^2\} )=-31\) which is square-free and therefore by Corollary 2.2.9 \(\{ 1,\alpha ,\alpha ^2\} \) is an integral basis and therefore \(\mathcal{O}_K=\mathbb {Z}[\alpha ]\).

Exercise 2.2.28
#

Using Theorem 2.2.25 show what if \(K=\mathbb {Q}(\sqrt{d})\) with \(d\) a square-free integer, then

\[ \Delta (\mathcal{O}_K)= \begin{cases} d & \text{if } d \equiv 1 \pmod4 \\ 4d & \text{if } d \equiv 2,3 \pmod4. \\ \end{cases} \]