• 1 Number Fields ▶
    • 1.1 Recap on rings and fields
    • 1.2 Irreducible polynomials
    • 1.3 Field extensions
    • 1.4 Algebraic numbers and number fields
    • 1.5 Embeddings
    • 1.6 The standard representation
    • 1.7 Norm and Trace
  • 2 Algebraic integers ▶
    • 2.1 Rings of integers
    • 2.2 Discriminants
    • 2.3 Cyclotomic fields
  • 3 Factorization in rings of integers ▶
    • 3.1 Units
    • 3.2 Ideals in rings of integers
    • 3.3 Dedekind domains
    • 3.4 Norms of ideals
    • 3.5 Splitting of prime ideals
    • 3.6 Embeddings and prime ideals
  • 4 The ideal class group ▶
    • 4.1 Computing class groups
  • 5 Solving Diophantine equations
  • 6 Geometry of numbers
  • 7 Bibliography
  • Dependency graph

Algebraic Number Theory

Christopher Birkbeck

  • 1 Number Fields
    • 1.1 Recap on rings and fields
    • 1.2 Irreducible polynomials
    • 1.3 Field extensions
    • 1.4 Algebraic numbers and number fields
    • 1.5 Embeddings
    • 1.6 The standard representation
    • 1.7 Norm and Trace
  • 2 Algebraic integers
    • 2.1 Rings of integers
    • 2.2 Discriminants
    • 2.3 Cyclotomic fields
  • 3 Factorization in rings of integers
    • 3.1 Units
    • 3.2 Ideals in rings of integers
    • 3.3 Dedekind domains
    • 3.4 Norms of ideals
    • 3.5 Splitting of prime ideals
    • 3.6 Embeddings and prime ideals
  • 4 The ideal class group
    • 4.1 Computing class groups
  • 5 Solving Diophantine equations
  • 6 Geometry of numbers
  • 7 Bibliography