Documentation

Project.PropertiesF

Non-vanishing of L(χ, 1) for nontrivial quadratic characters χ #

structure BadChar (N : ) [NeZero N] :

The object we're trying to show doesn't exist.

Instances For
    theorem BadChar.χ_ne {N : } [NeZero N] (self : BadChar N) :
    self 1
    theorem BadChar.χ_sq {N : } [NeZero N] (self : BadChar N) :
    self ^ 2 = 1
    theorem BadChar. {N : } [NeZero N] (self : BadChar N) :
    self.LFunction 1 = 0
    theorem BadChar.χ_apply_eq {N : } [NeZero N] (B : BadChar N) (x : ZMod N) :
    B x = 0 B x = 1 B x = -1

    The associated character is quadratic.

    def BadChar.F {N : } [NeZero N] (B : BadChar N) :

    The auxiliary function F: s ↦ ζ s * L B.χ s.

    Equations
    Instances For
      theorem BadChar.F_differentiableAt_of_ne {N : } [NeZero N] (B : BadChar N) {s : } (hs : s 1) :
      theorem BadChar.F_neg_two {N : } [NeZero N] (B : BadChar N) :
      B.F (-2) = 0

      The trivial zero at s = -2 of the zeta function gives that F (-2) = 0. This is used later to obtain a contradction.

      The complex-valued arithmetic function whose L-series is B.F.

      Equations
      Instances For
        theorem BadChar.e_summable {N : } [NeZero N] (B : BadChar N) {s : } (hs : 1 < s.re) :
        LSeriesSummable (fun (x : ) => B.e x) s
        theorem BadChar.abscissa {N : } [NeZero N] (B : BadChar N) :
        theorem BadChar.F_eq_LSeries {N : } [NeZero N] (B : BadChar N) {s : } (hs : 1 < s.re) :
        B.F s = LSeries (⇑B.e) s

        B.F agrees with the L-series of B.e on 1 < s.re.

        theorem BadChar.mult_e {N : } [NeZero N] (B : BadChar N) :
        B.e.IsMultiplicative
        theorem BadChar.e_prime_pow {N : } [NeZero N] (B : BadChar N) {p : } (hp : Nat.Prime p) (k : ) :
        0 B.e (p ^ k)
        theorem BadChar.e_nonneg {N : } [NeZero N] (B : BadChar N) (n : ) :
        0 B.e n

        B.e takes nonnegative real values.

        theorem BadChar.e_one_eq_one {N : } [NeZero N] (B : BadChar N) :
        B.e 1 = 1
        theorem BadChar.F_two_pos {N : } [NeZero N] (B : BadChar N) :
        0 < B.F 2
        theorem BadChar.elim {N : } [NeZero N] (B : BadChar N) :

        The goal: bad characters do not exist.