Documentation

Project.EulerProducts.Auxiliary

Auxiliary lemmas #

theorem Complex.summable_re {α : Type u_1} {f : α} (h : Summable f) :
Summable fun (x : α) => (f x).re
theorem Complex.summable_im {α : Type u_1} {f : α} (h : Summable f) :
Summable fun (x : α) => (f x).im
theorem Complex.inv_natCast_pow_ofReal_pos {n : } (hn : n 0) (x : ) :
0 < (n ^ x)⁻¹
theorem ArithmeticFunction.iteratedDeriv_LSeries_alternating (a : ArithmeticFunction ) (hn : ∀ (n : ), 0 a n) {x : } (h : (LSeries.abscissaOfAbsConv fun (x : ) => a x) < x) (n : ) :
0 (-1) ^ n * iteratedDeriv n (LSeries fun (x : ) => a x) x

If all values of a -valued arithmetic function are nonnegative reals and x is a real number in the domain of absolute convergence, then the nth iterated derivative of the associated L-series is nonnegative real when n is even and nonpositive real when n is odd.

theorem DifferentiableAt.isBigO_of_eq_zero {f : } {z : } (hf : DifferentiableAt f z) (hz : f z = 0) :
(fun (w : ) => f (w + z)) =O[nhds 0] id
theorem ContinuousAt.isBigO {f : } {z : } (hf : ContinuousAt f z) :
(fun (w : ) => f (w + z)) =O[nhds 0] fun (x : ) => 1
theorem Complex.isBigO_comp_ofReal {f : } {g : } {x : } (h : f =O[nhds x] g) :
(fun (y : ) => f y) =O[nhds x] fun (y : ) => g y
theorem Complex.isBigO_comp_ofReal_nhds_ne {f : } {g : } {x : } (h : f =O[nhdsWithin x {x}] g) :
(fun (y : ) => f y) =O[nhdsWithin x {x}] fun (y : ) => g y
theorem DifferentiableAt.comp_ofReal {e : } {z : } (hf : DifferentiableAt e z) :
DifferentiableAt (fun (x : ) => e x) z
theorem deriv.comp_ofReal {e : } {z : } (hf : DifferentiableAt e z) :
deriv (fun (x : ) => e x) z = deriv e z
theorem Differentiable.comp_ofReal {e : } (h : Differentiable e) :
Differentiable fun (x : ) => e x
theorem DifferentiableAt.ofReal_comp {z : } {f : } (hf : DifferentiableAt f z) :
DifferentiableAt (fun (y : ) => (f y)) z
theorem Differentiable.ofReal_comp {f : } (hf : Differentiable f) :
Differentiable fun (y : ) => (f y)
theorem HasDerivAt.of_hasDerivAt_ofReal_comp {z : } {f : } {u : } (hf : HasDerivAt (fun (y : ) => (f y)) u z) :
∃ (u' : ), u = u' HasDerivAt f u' z
theorem DifferentiableAt.ofReal_comp_iff {z : } {f : } :
DifferentiableAt (fun (y : ) => (f y)) z DifferentiableAt f z
theorem deriv.ofReal_comp {z : } {f : } :
deriv (fun (y : ) => (f y)) z = (deriv f z)
theorem iteratedDeriv_comp_const_add {𝕜 : Type u_1} {F : Type u_2} [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] (n : ) (f : 𝕜F) (s : 𝕜) :
(iteratedDeriv n fun (z : 𝕜) => f (s + z)) = fun (t : 𝕜) => iteratedDeriv n f (s + t)
theorem iteratedDeriv_comp_add_const {𝕜 : Type u_1} {F : Type u_2} [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] (n : ) (f : 𝕜F) (s : 𝕜) :
(iteratedDeriv n fun (z : 𝕜) => f (z + s)) = fun (t : 𝕜) => iteratedDeriv n f (t + s)
theorem iteratedDeriv_eq_on_open {𝕜 : Type u_1} {F : Type u_2} [NontriviallyNormedField 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] (n : ) {f : 𝕜F} {g : 𝕜F} {s : Set 𝕜} (hs : IsOpen s) (x : s) (hfg : Set.EqOn f g s) :
iteratedDeriv n f x = iteratedDeriv n g x
theorem Complex.realValued_of_iteratedDeriv_real_on_ball {f : } ⦃r : {c : } (hf : DifferentiableOn f (Metric.ball (↑c) r)) ⦃D : (hd : ∀ (n : ), iteratedDeriv n f c = (D n)) :
∃ (F : ), DifferentiableOn F (Set.Ioo (c - r) (c + r)) Set.EqOn (f Complex.ofReal) (Complex.ofReal F) (Set.Ioo (c - r) (c + r))

A function that is complex differentiable on the closed ball of radius r around c, where c is real, and all whose iterated derivatives at c are real can be give by a real differentiable function on the real open interval from c-r to c+r.

theorem Complex.realValued_of_iteratedDeriv_real {f : } (hf : Differentiable f) {c : } {D : } (hd : ∀ (n : ), iteratedDeriv n f c = (D n)) :

A function that is complex differentiable on the complex plane and all whose iterated derivatives at a real point c are real can be given by a real differentiable function on the real line.

theorem Complex.nonneg_of_iteratedDeriv_nonneg {f : } (hf : Differentiable f) (h : ∀ (n : ), 0 iteratedDeriv n f 0) ⦃z : (hz : 0 z) :
0 f z

An entire function whose iterated derivatives at zero are all nonnegative real has nonnegative real values for nonnegative real arguments.

An entire function whose iterated derivatives at zero are all nonnegative real is monotonic on the nonnegative real axis.

theorem Complex.at_zero_le_of_iteratedDeriv_nonneg {f : } (hf : Differentiable f) (h : ∀ (n : ), n 00 iteratedDeriv n f 0) {z : } (hz : 0 z) :
f 0 f z

An entire function whose iterated derivatives at zero are all nonnegative real (except possibly the value itself) has values of the form f 0 + nonneg. real along the nonnegative real axis.

theorem Complex.apply_le_of_iteratedDeriv_nonneg {f : } {s : } (hf : Differentiable f) (h : ∀ (n : ), n 00 iteratedDeriv n f s) {z : } (hz : s z) :
f s f z

An entire function whose iterated derivatives at s`` are all nonnegative real (except possibly the value itself) has values of the form f s + nonneg. realalong the sets + ℝ≥0`.

theorem Complex.at_zero_le_of_iteratedDeriv_alternating {f : } (hf : Differentiable f) (h : ∀ (n : ), n 00 (-1) ^ n * iteratedDeriv n f 0) {z : } (hz : z 0) :
f 0 f z

An entire function whose iterated derivatives at zero are all real with alternating signs (except possibly the value itself) has values of the form f 0 + nonneg. real along the nonpositive real axis.

theorem Complex.apply_le_of_iteratedDeriv_alternating {f : } {s : } (hf : Differentiable f) (h : ∀ (n : ), n 00 (-1) ^ n * iteratedDeriv n f s) {z : } (hz : z s) :
f s f z

An entire function whose iterated derivatives at s are all real with alternating signs (except possibly the value itself) has values of the form f s + nonneg. real along the set s - ℝ≥0.