Documentation

Project.EulerProducts.PNT

Statement of a version of the Wiener-Ikehara Theorem #

A version of the Wiener-Ikehara Tauberian Theorem: If f is a nonnegative arithmetic function whose L-series has a simple pole at s = 1 with residue A and otherwise extends continuously to the closed half-plane re s ≥ 1, then ∑ n < N, f n is asymptotic to A*N.

Equations
  • One or more equations did not get rendered due to their size.
Instances For

    The Riemann Zeta Function does not vanish on Re(s) = 1 #

    We use ζ to denote the Riemann zeta function.

    Equations
    Instances For

      We use χ₁ to denote the (trivial) Dirichlet character modulo 1.

      Equations
      Instances For
        theorem DirichletCharacter.LSeries_eulerProduct' {N : } (χ : DirichletCharacter N) {s : } (hs : 1 < s.re) :
        Complex.exp (∑' (p : Nat.Primes), -Complex.log (1 - χ p * p ^ (-s))) = LSeries (fun (n : ) => χ n) s

        A variant of the Euler product for Dirichlet L-series.

        theorem ArithmeticFunction.LSeries_zeta_eulerProduct' {s : } (hs : 1 < s.re) :
        Complex.exp (∑' (p : Nat.Primes), -Complex.log (1 - p ^ (-s))) = LSeries 1 s

        A variant of the Euler product for the L-series of ζ.

        theorem riemannZeta_eulerProduct' {s : } (hs : 1 < s.re) :
        Complex.exp (∑' (p : Nat.Primes), -Complex.log (1 - p ^ (-s))) = riemannZeta s

        A variant of the Euler product for the Riemann zeta function.

        theorem summable_neg_log_one_sub_char_mul_prime_cpow {N : } (χ : DirichletCharacter N) {s : } (hs : 1 < s.re) :
        Summable fun (p : Nat.Primes) => -Complex.log (1 - χ p * p ^ (-s))
        theorem re_log_comb_nonneg' {a : } (ha₀ : 0 a) (ha₁ : a < 1) {z : } (hz : z = 1) :
        0 3 * (-Complex.log (1 - a)).re + 4 * (-Complex.log (1 - a * z)).re + (-Complex.log (1 - a * z ^ 2)).re

        A technical lemma showing that a certain linear combination of real parts of logarithms is nonnegative. This is used to show non-vanishing of the Riemann zeta function and of Dirichlet L-series on the line re s = 1.

        theorem re_log_comb_nonneg_dirichlet {N : } (χ : DirichletCharacter N) {n : } (hn : 2 n) {x : } {y : } (hx : 1 < x) :
        0 3 * (-Complex.log (1 - 1 n * n ^ (-x))).re + 4 * (-Complex.log (1 - χ n * n ^ (-(x + Complex.I * y)))).re + (-Complex.log (1 - χ n ^ 2 * n ^ (-(x + 2 * Complex.I * y)))).re

        The logarithm of an Euler factor of the product L(χ^0, x)^3 * L(χ, x+I*y)^4 * L(χ^2, x+2*I*y) has nonnegative real part when s = x + I*y has real part x > 1.

        theorem one_lt_re_of_pos {x : } (y : ) (hx : 0 < x) :
        1 < (1 + x).re 1 < (1 + x + Complex.I * y).re 1 < (1 + x + 2 * Complex.I * y).re
        theorem norm_dirichlet_product_ge_one {N : } (χ : DirichletCharacter N) {x : } (hx : 0 < x) (y : ) :
        LSeries (fun (n : ) => 1 n) (1 + x) ^ 3 * LSeries (fun (n : ) => χ n) (1 + x + Complex.I * y) ^ 4 * LSeries (fun (n : ) => (χ ^ 2) n) (1 + x + 2 * Complex.I * y) 1

        For positive x and nonzero y we have that $|L(\chi^0, x)^3 \cdot L(\chi, x+iy)^4 \cdot L(\chi^2, x+2iy)| \ge 1$.

        theorem norm_zeta_product_ge_one {x : } (hx : 0 < x) (y : ) :
        riemannZeta (1 + x) ^ 3 * riemannZeta (1 + x + Complex.I * y) ^ 4 * riemannZeta (1 + x + 2 * Complex.I * y) 1

        For positive x and nonzero y we have that $|\zeta(x)^3 \cdot \zeta(x+iy)^4 \cdot \zeta(x+2iy)| \ge 1$.

        theorem riemannZeta_isBigO_near_one_horizontal :
        (fun (x : ) => riemannZeta (1 + x)) =O[nhdsWithin 0 (Set.Ioi 0)] fun (x : ) => 1 / x
        theorem riemannZeta_isBigO_of_ne_one_horizontal {y : } (hy : y 0) :
        (fun (x : ) => riemannZeta (1 + x + Complex.I * y)) =O[nhdsWithin 0 (Set.Ioi 0)] fun (x : ) => 1
        theorem riemannZeta_isBigO_near_root_horizontal {y : } (hy : y 0) (h : riemannZeta (1 + Complex.I * y) = 0) :
        (fun (x : ) => riemannZeta (1 + x + Complex.I * y)) =O[nhdsWithin 0 (Set.Ioi 0)] fun (x : ) => x
        theorem riemannZeta_ne_zero_of_one_le_re ⦃z : (hz : z 1) (hz' : 1 z.re) :

        The Riemann Zeta Function does not vanish on the closed half-plane re z ≥ 1.

        The logarithmic derivative of ζ has a simple pole at s = 1 with residue -1 #

        We show that s ↦ ζ' s / ζ s + 1 / (s - 1) (or rather, its negative, which is the function we need for the Wiener-Ikehara Theorem) is continuous outside the zeros of ζ.

        noncomputable def ζ₁ :

        The function obtained by "multiplying away" the pole of ζ. Its (negative) logarithmic derivative is the function used in the Wiener-Ikehara Theorem to prove the Prime Number Theorem.

        Equations
        Instances For
          theorem ζ₁_apply_of_ne_one {z : } (hz : z 1) :
          ζ₁ z = riemannZeta z * (z - 1)
          theorem neg_logDeriv_ζ₁_eq {z : } (hz₁ : z 1) (hz₂ : riemannZeta z 0) :

          Derivation of the Prime Number Theorem from the Wiener-Ikehara Theorem #

          theorem PNT_vonMangoldt (WIT : WienerIkeharaTheorem) :
          Filter.Tendsto (fun (N : ) => (Finset.range N).sum ArithmeticFunction.vonMangoldt / N) Filter.atTop (nhds 1)

          The Wiener-Ikehara Theorem implies the Prime Number Theorem in the form that ψ x ∼ x, where ψ x = ∑ n < x, Λ n and Λ is the von Mangoldt function.