Asymptotic bounds for Jacobi theta functions #
The goal of this file is to establish some technical lemmas about the asymptotics of the sums
F_nat k a t = ∑' (n : ℕ), (n + a) ^ k * exp (-π * (n + a) ^ 2 * t)
and
F_int k a t = ∑' (n : ℤ), |n + a| ^ k * exp (-π * (n + a) ^ 2 * t).
Here k : ℕ and a : ℝ (resp a : UnitAddCircle) are fixed, and we are interested in
asymptotics as t → ∞. These results are needed for the theory of Hurwitz zeta functions (and
hence Dirichlet L-functions, etc).
Main results #
HurwitzKernelBounds.isBigO_atTop_F_nat_zero_sub: for0 ≤ a, the functionF_nat 0 a - (if a = 0 then 1 else 0)decays exponentially at∞(i.e. it satisfies=O[atTop] fun t ↦ exp (-p * t)for some real0 < p).HurwitzKernelBounds.isBigO_atTop_F_nat_one: for0 ≤ a, the functionF_nat 1 adecays exponentially at∞.HurwitzKernelBounds.isBigO_atTop_F_int_zero_sub: for anya : UnitAddCircle, the functionF_int 0 a - (if a = 0 then 1 else 0)decays exponentially at∞.HurwitzKernelBounds.isBigO_atTop_F_int_one: the functionF_int 1 adecays exponentially at∞.
theorem
HurwitzKernelBounds.f_le_g_nat
(k : ℕ)
{a : ℝ}
{t : ℝ}
(ha : 0 ≤ a)
(ht : 0 < t)
(n : ℕ)
:
‖HurwitzKernelBounds.f_nat k a t n‖ ≤ HurwitzKernelBounds.g_nat k a t n
The sum to be bounded (ℕ version).
Equations
- HurwitzKernelBounds.F_nat k a t = ∑' (n : ℕ), HurwitzKernelBounds.f_nat k a t n
Instances For
theorem
HurwitzKernelBounds.summable_f_nat
(k : ℕ)
(a : ℝ)
{t : ℝ}
(ht : 0 < t)
:
Summable (HurwitzKernelBounds.f_nat k a t)
Sum over ℕ with k = 0 #
Here we use direct comparison with a geometric series.
Sum over ℕ with k = 1 #
Here we use comparison with the series ∑ n * r ^ n, where r = exp (-π * t).
theorem
HurwitzKernelBounds.f_int_ofNat
(k : ℕ)
{a : ℝ}
(ha : 0 ≤ a)
(t : ℝ)
(n : ℕ)
:
HurwitzKernelBounds.f_int k a t (Int.ofNat n) = HurwitzKernelBounds.f_nat k a t n
theorem
HurwitzKernelBounds.f_int_negSucc
(k : ℕ)
{a : ℝ}
(ha : a ≤ 1)
(t : ℝ)
(n : ℕ)
:
HurwitzKernelBounds.f_int k a t (Int.negSucc n) = HurwitzKernelBounds.f_nat k (1 - a) t n
theorem
HurwitzKernelBounds.summable_f_int
(k : ℕ)
(a : ℝ)
{t : ℝ}
(ht : 0 < t)
:
Summable (HurwitzKernelBounds.f_int k a t)
theorem
HurwitzKernelBounds.F_int_eq_of_mem_Icc
(k : ℕ)
{a : ℝ}
(ha : a ∈ Set.Icc 0 1)
{t : ℝ}
(ht : 0 < t)
:
HurwitzKernelBounds.F_int k (↑a) t = HurwitzKernelBounds.F_nat k a t + HurwitzKernelBounds.F_nat k (1 - a) t