Maps on the unit circle #
In this file we prove some basic lemmas about expMapCircle and the restriction of Complex.arg
to the unit circle. These two maps define a partial equivalence between circle and ℝ, see
circle.argPartialEquiv and circle.argEquiv, that sends the whole circle to (-π, π].
Alias of Circle.arg_exp.
Alias of Circle.exp_arg.
Complex.arg ∘ (↑) and expMapCircle define a partial equivalence between circle and ℝ
with source = Set.univ and target = Set.Ioc (-π) π.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Complex.arg and expMapCircle define an equivalence between circle and (-π, π].
Equations
- Circle.argEquiv = { toFun := fun (z : Circle) => ⟨(↑z).arg, ⋯⟩, invFun := ⇑Circle.exp ∘ Subtype.val, left_inv := ⋯, right_inv := Circle.argEquiv.proof_2 }
Instances For
Alias of Circle.leftInverse_exp_arg.
Alias of Circle.surjOn_exp_neg_pi_pi.
Alias of Circle.invOn_arg_exp.
Alias of Circle.periodic_exp.
Alias of Circle.exp_two_pi.
Alias of Circle.exp_sub_two_pi.
Alias of Circle.exp_add_two_pi.
Alias of Real.Angle.toCircle.
Circle.exp, applied to a Real.Angle.
Equations
Instances For
Alias of Real.Angle.toCircle_coe.
Alias of Real.Angle.coe_toCircle.
Alias of Real.Angle.toCircle_zero.
Alias of Real.Angle.toCircle_neg.
Alias of Real.Angle.toCircle_add.
Alias of Real.Angle.arg_toCircle.
Alias of isLocalHomeomorph_circleExp.